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The fundamental properties of nonlinear progressive edge waves are investigated 
experimentally in a physical model with a uniformly and mildly sloping beach with 
a straight shoreline. An evolution equation for the envelope of progressive edge waves 
is the nonlinear Schrodinger (NLS) equation. It is found that the timescale of 
viscous-dissipation effects in the experiments is comparable with the timescale of the 
theoretical evolution process for inviscid progressive edge waves. This lack of 
timescale separation indicates a major shortcoming of the NLS equation as a model 
of the laboratory experiments. Even with this limitation, a uniform train of edge 
waves is found to be unstable to a modulational perturbation as predicted by the 
NLS equation. However, behaviour of the evolution is both qualitatively and 
quantitatively different from the theoretical predictions. The evolution of the 
periodogram for the unstable wavetrain shows an asymmetric development of the 
sidebands about the fundamental frequency ; instability growth is limited to the lower 
sideband. This behaviour leads to a sequential shift of wave energy to lower 
frequencies as the waves propagate. It is found that a locally soliton-shaped wave 
packet is unstable in the laboratory environment. It is estimated that a much-larger- 
scale experimental facility is required to achieve inviscid experiments for the NLS 
equation. 

1. Introduction 
Edge waves are one type of trapped-wave phenomenon which occurs near the shore 

by wave refraction owing to the variable water depth. Edge waves propagate parallel 
to the shoreline with their crests pointing offshore while their amplitude is maximum 
at the shore and decays asymptotically to zero in the offshore direction. Wavelengths 
of edge waves are generally much longer than those associated with incoming waves 
from offshore. Thus the visual observation of edge waves is usually obscured. Perhaps 
this less obvious existence of edge waves in the field has prevented the regarding of 
this wave phenomenon as important for a long time. However, there is now 
considerable evidence which indicates that edge waves play an important role in 
coastal flooding, surfbeat phenomena, rip currents, and sedimentology such as the 
formation of crescentic bars and beach cusps. 

Stokes (1846) provided the first analytical evidence for the existence of waves that 
can propagate along a straight coastline on a beach with a uniform slope. The offshore 
profile of Stokes' edge waves is an exponential decay with an e folding distance 
ye = (k cosP)-' ,  where k is the wavenumber and /3 is the beach slope from the 
horizontal. More than one hundred years later, Ursell (1952) showed that there are 
edge-wave modes other than Stokes' solution. The number of modes depends upon 
the beach slope with the largest mode number n (a non-negative integer) satisfying 
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(2n+ 1)  /3 < $; the Stokes mode corresponds to n = 0. The higher-mode solution also 
decays asymptotically to zero in the offshore direction but having a node(s) in the 
offshore profile. The dispersion relation between wave frequency w and k is given by 

(1 .1)  

Using Fourier series expansion for the full water-wave theory, Whitham (1976) 
proved the existence of weakly nonlinear edge waves of the Stokes mode (they have 
small but finite wave amplitudes) that continue to propagate parallel to the shore. 
The dispersion relation for the Stokes mode with the leading order of nonlinear 
correction is given by 

where a is the amplitude of the wave runup on the beach. The form of the dispersion 
relation (1.2) indicates that weakly nonlinear edge waves are unstable to small 
perturbation based on an instability criterion given by Whitham (1974, p. 490). 
Resemblance of (1.2) to the dispersion relation for deep-water waves led Whitham 
(1976) to infer the existence of edge-wave solitons. His inference can be confirmed 
by the evolution equation for an envelope of edge waves. Applying the method used 
by Martin, Yuen & Saffman (1980), the evolution equation for edge waves can be 
found as follows. Suppose small perturbations of wavenumber k and frequency 
w are imposed in (1.2) such that 

w2 = gk sin (2n+ 1)p. 

w2 = gk sin,$ ( 1  +$2k2), (1.2) 

k = ko+k‘,  w = w,,+w’, (1.3) 

where the prime denotes the perturbation, and 6~: = gk, sinp. Substitution of (1.3) 
into (1.2) and keeping terms to second order in the perturbation yields 

There exists a direct correspondence between the dispersion relation and the 
governing equation : 

where x points the propagation (longshore) direction, t is time, and a denotes the 
partial differentiation with respect to the letter subscript. Then (1.4) can be expressed 
as operator form : 

a, t) - iw’, a, t) ik’, (1.5) 

If this operator N is applied to the complex wave-amplitude parameter A, the 
evolution equation for progressive edge waves appears to be 

since a = IAI. Equation (1 .7)  is the nonlinear Schrodinger equation (the NLS 
equation). Different versions of the derivation of (1.7) were made independently by 
Akylas (1983) and Yeh (1983). 

It is noted that the evolution equation (1 .7)  for an envelope of the edge waves is 
identical with that for two-dimensional deep-water waves except that the coefficient 
of the nonlinear term is one half of that for the deep-water waves. In addition, the 
evolution process appears to be limited to the longshore direction, i.e. offshore 
behaviour is not affected. Thus, the behaviour of the evolution process for edge waves 
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is readily deduced from many studies of the NLS equation for deep-water waves made 
during the past decade, e.g. by Zakharov & Shabat (1971), Hashimoto & Ono (1972), 
Lake et al. (1977), Ablowitz & Segur (1979), First, a uniform train of edge waves 
is unstable to a modulational perturbation. This type of instability is well known as 
the Benjamin-Feir instability for deep-water waves, after Benjamin & Feir (1967). 
It is also known as the sideband instability because the modulational perturbation 
manifests itself in the frequency domain as a pair of sidebands around the carrier- 
wave component. It can be found that a uniform train of edge waves is unstable if the 
sideband components lie in the range : 

where 6 measures the frequency separation Au of the sideband components from the 
carrier-wave frequency wc. The instability growth in terms of an e folding distance 
ue of propagation is 

The instability with a maximum growth rate occurs at 

(T, = {6(a2k2-S2)i k}-'. (1.9) 

S = h a k ,  (1.10) 

and the e folding distance associated with the maximum growth rate is 
n 

(1.11) 

It should be noted that the instability range on S is narrower and the growth rate is 
slower for the edge waves than for corresponding deep-water waves. 

The numerical computations of the nonlinear Schrodinger equation for deep-water 
waves made by Lake et al. (1977) suggests that after the unstable wavetrain reaches 
a state of maximum modulation, the solution demodulates and eventually returns to 
the initial unmodulated state. The behaviour of a series of modulation-demodulation 
cycles associated with the instability of a nonlinear system is known as the 
Fermi-Pasta-Ulam (FPU) recurrence. Since the edge-wave evolution equation is 
basically the same as that of the deep-water waves, the FPU recurrence phenomenon 
is anticipated for the long-time evolution. 

Using the inverse scattering transform, Zakharov & Shabat (1971) solved the NLS 
equation exactly for initial conditions that decay sufficiently fast as 1x1 + a. 
Zakharov & Shabat showed that any initial packet of deep-water waves eventually 
evolves into a finite number of envelope solitons and a dispersive train of oscillatory 
waves. Hence, the existence of edge-wave envelope solitons can be expected with the 
form : 

A = a sech{ak2(x-Cgt)} exp(iio,a2k2t). (1.12) 

Note that the envelope soliton propagates with the linear group velocity C, of the 
dominant carrier wave: the amplitude of the envelope soliton and its propagation 
velocity are independent parameters. 

In the present paper, basic properties of progressive edge waves as well as the 
behaviour predicted by the NLS equation are investigated experimentally in the 
controlled laboratory environment. Justification and/or shortcomings of the inviscid 
theory are identified for the boundary-dominated flow phenomenon. 
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FIGURE 1. Schematic drawings of the basin, beach, and related facilities; 
(a) plan view, ( b )  section A-A view. 

2. Experiments 
A series of experiments for progressive edge waves of the Stokes mode was 

conducted in a wave basin 19.5 m wide, 18.3 m long, and 0.76 m deep. Schematic 
drawings of plan and elevation views of the basin and beach are shown in figure 1. 
A beach was installed spanning the basin width and is constructed from galvanized 
sheet steel. In the present study, the slope of the beach was set 15" from the 
horizontal, /3= 15'. The overflow weir was utilized to skim the water surface 
continually by providing a slow flow of water into the basin prior to the experiments. 
The beach-surface wetting system shown in figure 1 is basically a single line sprinkler 
system that provides an evenly wet condition in the wave runup region on the beach 
and, more importantly, eliminates possible formation of a watel-ail-steel contact line 
at  the locus of the maximum runup so that the influence of surface tension there can 
hopefully be minimized. In  fact, it was observed that the waves generated with the 
treatment of the wetting system have a less distorted sinusoidal profile than those 
without the treatment. Because of a relatively long wavelength associated with edge 
waves, i t  is important to provide a physically large energy-absorption system at the 
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downstream end of the beach to minimize wave reflection there. The energy-absorption 
system (not shown in figure 1) consists of seven honeycomb-shaped porous aluminium 
blocks which are arranged to form the 3.0m long and 2.4m wide system. The 
reflection coefficient of the absorption system is approximately 9 %  for waves 
generated in this study, which is sufficient to allow experiments on progressive edge 
waves. In  addition to this energy-absorption system on the beach, sheets of 
rubberized horse hair are attached to the basin walls to minimize reflections of waves 
escaped offshore. 

The wavemaker is a wedge-shaped paddle that is hinged offshore and oscillates in 
the longshore direction about the vertical axis. The wave paddle is activated by a 
hydraulic cylinder, and the hydraulic power unit which drives the cylinder is 
controlled by the electric servo system. Basically, the overall wave-generating system 
converts a pre-programmed input electrical signal into the mechanical displacement 
of the wave paddle. The entire wave-generating system except the wave paddle is 
installed directly on the laboratory floor outside the basin; thus the mechanical 
vibrations associated with the system do not disturb the water in the basin. 

Wave amplitudes were measured using resistance-type wave gauges. In  order to 
calibrate and position the wave gauge without disturbing the water in the basin, each 
gauge is mounted on a remote-controlled gauge-positioning system. The gauge 
position can be changed vertically as well as horizontally using the precision of the 
stepper motors which are controlled by the system outside of the basin. A more 
detailed discussion of the laboratory apparatus has been presented by Yeh (1983). 

In addition to analog recordings by an oscillograph recorder, digitized wave data 
are taken with a sampling rate of 25 Hz and are analysed in the frequency domain 
by means of periodograms. The periodograms are computed for a frequency range 
of 0-2.44 Hz with a resolution bandwidth of 0.0244 Hz. Analysis of the data in the 
frequency domain enables us to obtain the quantitative information on the evolution 
process such as sideband magnitudes, sideband growth rates, sideband frequencies, 
Similar methodology has been applied to analyse the evolution of deep-water waves 
by both Lake et al. (1977) and Melville (1982). 

3. Results 
3.1. Uniform train of edge waves 

We first examine the offshore and longshore characteristics of a uniform train of edge 
waves. Figure 2 shows experimental results for the offshore amplitude profiles for 
uniform wavetrains with w = 2.79 rad/s in the range of the nonlinearity parameter, 
0.018 < ak < 0.10. These results are based upon measurements at x = 12 m (kx = 37) 
from the wave paddle. The agreement of the measured profiles with the theoretical 
predictions (exponential decays with ye = (k cos/3)-') provides clear evidence that 
real progressive edge waves are generated. It should be remarked that absolute 
magnitudes of the measured wave amplitudes at the offshore locations are 
extremely small. Perhaps for this reason, the best agreement with the theory is 
observed for the case with the largest wave amplitude, ak = 0.10. 

The inviscid theory does not predict any attenuation of edge waves as they 
propagate. However, wave energy in a real-fluid environment is always dissipated 
owing to the effect of viscosity so that wave amplitudes attenuate during propagation. 
Thus, it is necessary to modify the inviscid theory to account for the real-fluid effects 
before comparison with measured data. A simple model of edge-wave attenuation 
based on the shallow-water approximation was provided by Guza & Davis (1974). 
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FIQURE 2. Offshore amplitude profiles of edge waves. w = 2.79 rad/s, 2 = 12 m (kz = 37); 0 ,  

ak= 0.10; A ,  ak = 0.073; m ,  ak = 0.043; 0 ,  ak = 0.018; -, theoretical profile with 
ye = (k cosP)-’ .  

They considered the lowest-order viscous effects in thin laminar boundary layers at 
the (uncontaminated) free surface and the solid bottom boundary of the fluid domain 
as well as dissipation in the nearly irrotational interior. It was found that dissipation 
in the bottom boundary layer dominates the edge-wave attenuation, and the 
edge-wave amplitude is attenuated according to 

where y is the attenuation rate. Extending the analysis of Guza & Davis to the full 
water-wave theory, the attenuation rate due to  viscous effects at the bottom 
boundary, yh, is found to be 

in which v is the kinematic viscosity, and R is the Reynolds number defined by 

(3.3) 

However, considering the present laboratory conditions, the water surface cannot 
be prevented from contamination. Van Dorn (1966) reported that a ‘fully 
contaminated’ surface condition is achieved in a reasonable period of time (hours) 
when a clean water surface is simply cxposed to  the atmosphere. I n  the fully 
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FIQURE 3. Longshore attenuation of wave amplitude. w = 4.05 rad/s; 
0, mewured data; -, equation (3.1); ----, best fit to the data. 

contaminated state, the surface may be regarded as incompressible so that the 
surface is horizontally immobilized. Thus, its contribution to attenuationis comparable 
to that of a solid boundary. Considering the fact that the present experiments are 
reproducible, the water surface must be fully contaminated during the measurements. 
The attenuation rate due to the fully contaminated surface film can be obtained by 
a similar manner as used for the bottom boundary layer and is given by 

(3.4) 

The combined effects of a contaminated free surface and bottom boundary layer, 
yt = ys+ y,,, are used in (3.1) to predict the wave attenuation here. 

The observed longshore attenuation of amplitude of edge waves with 
w = 4.05 rad/s is presented in figure 3. Actual wave amplitudes are measured at 
y = 10 cm (ky = 0.65) and are expressed, for the presentation in figure 3, in terms 
of the parameter ak. Figure 3 shows that the measured rate of attenuation 
ym = 0.0452 s-l is slightly greater than the theoretical value yt = 0.0350 s-l. This 
discrepancy can be attributed (probably) to dissipation due to the wave r u n u p  
rundown process on the beach. For example, formation of an air-water-steel contact 
line can create water surface curvatures with small radii so that energy transfer to 
capillary waves may occur there. In fact, capillary waves radiating offshore from the 
shoreline were observed during experiments. In addition, the flow domain is saturated 
by the boundary layers near and a t  the shore, i.e. boundary layers there are not thin. 
The energy dissipation mechanism at the saturated boundary layer is not known but 
may contribute to the additional dissipation. (Quantitative estimates of dissipation 
in the wave runup region are difficult.) 

3.2. Modulational instability 
From an examination of the solutions to the NLS equation (1.7), i t  was found that 
a uniform train of progressive edge waves is unstable to a modulational perturbation 
in their amplitude and frequency, i.e. the modulational feature of an initially uniform 
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wavetrain is enhanced during propagation. The theoretical predictions for salient 
features of the instability have already been mentioned and described in (1.8)-(1.11). 
In  order to make quantitative comparisons between the experimental and theoretical 
results, the effects of viscous dissipation must be considered. (Viscosity is ignored in 
the theoretical model, while actual wave propagation involves substantial amplitude 
attenuation as shown in figure 3.) This fundamental discrepancy is often a higher-order 
effect for experimental studies on water waves. (For example, Lake et al. (1977) 
reported good agreement between theoretical and experimental results on the initial 
modulational instability of nonlinear deep-water waves. For their carefully controlled 
experiments, the wave attenuation rate can be estimated based on the assumption 
that dominant dissipation occurred at the sidewall boundary layers of the tank and 
in the nearly irrotational interior of the fluid domain. For the wave frequency of 
2.5 Hz, the e folding time for the attenuation inferred for the experiments by Lake 
et al. is approximately 360 s. The e folding time for growth of the modulational 
instability was approximately 6 s in their experiments. Therefore, the effects of wave 
attenuation were small relative to the inviscid evolution dynamics of a deep-water 
wave train. ) 

However, a measured value of the attenuation rate for an edge-wavetrain with 
w = 4.05 rad/s is yrn = 0.045 s-l as presented in $3.1 and corresponding e folding 
time is 22 s. Using the measured value of ak = 0.23 at x = 5 m (kx = 32) in the 
experiment presented in figure 3, the e folding time of the theoretical modulational 
growth is approximately 20 s. Thus, the timescale of the wave attenuation is com- 
parable to that of the inviscid instability. In other words, energy dissipation by 
viscosity is just as important to the evolution process as the inviscid dynamics on the 
slow timescale. Thus, the validity of the NLS equation becomes questionable as an 
appropriate model of the experiments (or vice versa). This limitation of the theory 
(or experiments) is quite important and must be remembered in the theoretical and 
experimental comparisons which follow. 

When the timescale of wave attenuation by viscosity is much longer than that of 
the inviscid dynamics, the theory can be modified to incorporate the slowly varying 
effect of attenuation. Although this does not appear to be the case in the present 
experiments, we will adopt this procedure and then discuss its applicability a 
posteriori. The modification to (1.9) based on linear damping by viscosity yields 

u, = [ 6 { a2k2 exp ( -- 4?)-geJtk]l. (3.5) 

It should be emphasized that the modified theory above does not take into account 
nonlinear interactions involving dissipation and should only be regarded as a very 
rough estimate of the effects. 

A uniform train of edge waves is first generated to examine the modulational 
instability due to background noise in the wave basin. Wave-gauge recordings of 
amplitude with time a t  fixed spatial locations are presented in figure 4. The wave 
amplitudes shown are not equally scaled but their magnitudes can be found from 
figure 3. These time-domain data show that the initial uniform wavetrain is unstable. 
At x = 5 m (kx = 32) the wave record still indicates a uniform wavetrain with no 
detectable modulation of the amplitude envelope. This uniform wavetrain evolves 
to a slightly modulated state at x = 14 m (kx = 91). The modulation parameter 6, 
defined in (1 A), appears to be approximately 0.1 although it is not clear owing to the 
small modulation. Even though the instability is detectable in figure 4, the observed 
growth is fairly small due to (presumably) the limited beach length available for the 
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FIGURE 4. Temporal wave profiles at y = 10cm (ky = 0.65) for four longshore locations. 
w = 4.05 rad/s; (a) x = 5 m (kx = 32), ak = 0.22; (b)  x = 8 m (kx = 52), ak = 0.16; (c) x = 11 m 
(kx = 71), ak = 0.09; (d) x = 14 m (h = 91), ak = 0.06. (Amplitudes shown are not scaled.) 

wave propagation. In  order to obtain more definitive results, a wavetrain is produced 
with initial amplitude modulation imposed directly by the programmable wavemaker. 
Since the instability growth is exponential, the imposed modulation enhances the 
effects of the instability so as to observe the evolution more clearly along the limited 
beach length. Almost uniform waves with slight initial modulation of 6 = 0.167 are 
generated and the resulting evolution is presented in figure 5. The value of S = 0.167 
was selected simply because the larger value of 8 yields the better resolution on the 
sidebands for the periodograms (presented later), and 6 = 0.167 is still within the 
unstable range according to (1.8) with the value of nonlinear parameter, tik = 0.19, 
at x = 5 m (kx = 32), where E is the time-averaged runup amplitude. Figure 5 
indicates that a very slight amplitude modulation observed at  x = 5 m (kz = 32) 
evolves to the much stronger modulation at x = 14 m (kx = 91). This behaviour 
provides clear qualitative evidence for the instability of modulations1 perturbation 
as predicted by the theory. The corresponding periodograms are shown in figure 6. 
The ordinate of a periodogram represents the modulus-squared of the finite Fourier 
transform of a time series; thus, in the normalized form in figure 6, the parameter S 
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FIQURE 5. Temporal wave profiles a t  y = 10 cm (Icy = 0.65) for four longshore locations of a 
wavetrain with an initially imposed amplitude modulation, S = 0.167, w = 4.05 rad/s; (a) x = 5 m 
(kz = 32), iiIc = 0.19; ( b )  z = 8 m (kz = 52), iik = 0.13; (c) 5 = 1 1  m (kz = 71),  iik = 0.07; (d) 
z = 14 m (kz = 91), tik = 0.05. (Amplitudes shown are not scaled.) 

represents the wave amplitude normalized by that at the carrier wave frequency 0,. 

The magnitude of the modulation is quantitatively measured by the parameter S2 
at the sideband frequencies. It is noted that the use of the normalized parameter S2 
removes the first-order effect of dissipation. The sequence of periodograms in 
figure 6 shows the sideband growth with propagation from the initially (almost) 
uniform wavetrain, but the growth seems to be limited to  the lower sideband 
component only. Variations of the parameter S2 with the propagation distance for 
both upper- and lower-sideband components are presented in figure 7 together with 
the corresponding theoretical prediction for damped growth given by (3.5). It should 
be noted that the theoretical curve of the inviscid growth given by (1.9) would be 
a straight line in the figure but is not presented here since the effective value of ak 
cannot be identified due to its rapid decay. (However, note that a slope of the damped 
growth curve represents the inviscid growth rate based on the local value of ak.) 
Figure 7 shows an exponential growth of the lower sideband component with a 
constant rate; the e folding distance for the measured growth is ue = 7.3 m. The lower 
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FIGURE 7. Variation of normalized sideband amplitudes with propagation distance. 0,  lower 
sideband; 0,  upper sideband; -, theory (equation (3.5)); -*-, measured growth (re = 7.1 m); 
- _ _  , (3.5) using upper-sideband attenuation; - - - ---, (3.5) using lower-sideband attenuation. 

sideband continues to grow even when the local value of wave nonlinearity becomes 
very small, e.g. 8k = 0.05 at kx = 91. No such exponential growth of the upper 
sideband can be observed ; its magnitude X2 is essentially constant during propaga- 
tion. The damped growth given by (3.5) eventually predicts no growth, in agreement 
with the measured upper sideband behaviour but not with the lower sideband 
behaviour. The inviscid and modified inviscid theories of (1.9) and (3.5) which 
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predict equal growth of both sideband components totally fail to describe the 
diverging trend of the measured upper- and lower-sideband components. 

A diverging trend of sideband amplitudes during evolution is not unique to the 
present experimental results on edge waves. Such a phenomenon was also observed 
for deep-water waves by both Lake et al. (1977) and Melville (1982). According to 
their similar experimental results, both sideband components grow exponentially 
with the same rate in the early stage of evolution. However, after the wavetrain 
modulates substantially (P E 0.1)) sideband growth slows down but each sideband 
decelerates with a different rate ; the amplitude of the upper sideband becomes smaller 
than that of the lower sideband. The deceleration of growth continues until both 
sidebands fall to local minima at which time they then begin growing again. Melville 
added that this divergence of the sideband amplitudes occurred in the neighbourhood 
of the onset of wave breaking observed in his experiments and the local minima 
corresponded to the cessation of breaking. In this basis, Melville suggested that the 
diverging behaviour was caused by wave breaking since the breaking instability is 
selective over the relatively small frequency difference between sidebands. The 
breaking mechanism cannot be an explanation for the similar behaviour observed for 
edge waves since no breaking occurred in these experiments. The energy dissipation 
involved in the edge-wave experiments is large but the effects are smooth in time 
rather than abrupt as in wave breaking. Perhaps this is why the results presented 
in figure 7 are orderly compared to the transient behaviour of the sidebands observed 
during wave breaking for the deep-water wavetrain. According to a linear analysis, 
viscous effects are not so selective over the relatively small frequency difference 
between sidebands. In  order to demonstrate this, the theoretical damped growth of 
(3.5) using viscous dissipation for each sideband component is shown in figure 7 
(although the use of a dissipation term in (3.5) other than that for a carrier-wave 
component does not have a clear theoretical basis). However, this linear analysis for 
the viscous effects might not conform to the present situation where the timescale 
of dissipative effects is comparable with that of the inviscid instability, so that the 
nonlinear interactions involving dissipation may be important. 

3.3. Long-time evolution 

As discussed in $1 ,  numerical computations of the nonlinear Schrodinger (NLS) 
equation by Lake et al. (1977) implied the Fermi-Pasta-Ulam recurrence phenomenon 
for the long-time evolution of edge waves. However, reliability of this prediction for 
edge waves is questionable in the laboratory environment because of substantial 
viscous dissipation present in the evolution process. It is even uncertain if consideration 
of the subject itself is relevant since the evolution process may not reach a ‘long-time ’ 
stage maintaining its nonlinear characteristics. 

In  order to observe the long-time evolution of a deep-water wavetrain in the limited 
length of a wave tank, Lake el al. (1977) conducted a series of experiments using wave- 
trains having fixed values of a carrier-wave frequency we,  initial wave nonlinearity 
parameter (ak),, and sideband separation parameter 6. The only difference between 
the individual experiments was that each was performed imposing different magni- 
tudes of sidebands at the wavemaker. These measurements were then patched 
together to obtain the evolution in an ‘effectively’ longer wave tank. This procedure 
is only possible for studying the long-time behaviour of inviscid dynamics when 
dissipative effects are so small that the fixed value of (ak), used in each experiment 
does not create significant discontinuity in the patched results. The rapid reduction 
of amplitude by viscosity in the edge-wave experiments prohibits the study of the 
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evolution in an ‘effectively’ longer wave tank by patching the results because of the 
significant discontinuity involved in ak. Despite this drawback, we conducted a series 
of experiments using successive wavetrains with a fixed value of (ak), but varying 
strengths of the initial modulation, just as performed by Lake et al. for deep-water 
waves. Instead of patching, we initially examined the results of each experiment 
separately to see the impact of large modulation of a uniform train. 

Wave gauge recordings at the distance y = 10 om (ky = 0.65) for wavetrains with 
w, = 4.05 rad/s, 6 = 0.167, and various strengths of the initial modulation are 
presented in figure 8. In  order to identify each wavetrain generated, the parameter 
S, is introduced here, which represents a sideband amplitude normalized by that a t  
a carrier frequency for the imposed wave paddle motion itself. The wavetrains 
presented in figures 8(a) ,  (b), and (c) are generated with S ,  = 0.10, 0.29, and 1.0 
respectively. (Incidentally, the wavetrain presented in figure 5 is generated with 
S, = 0.025.) As shown in figures 8 ( a )  and (h ) ,  the amplitude modulations are 
enhanced during propagation for the wavetrains generated with S, = 0.10 and 0.29. 
Each wave packet for S, = 0.29 is eventually ‘pinched out ’ from the adjacent packet. 
On the other hand, the wavetrain generated with S, = 1.0 (full node-to-node 
modulation) demodulates and appears to be evolving toward an unmodulated state. 
This behaviour in the time-domain data corresponds qualitatively to that of 
Fermi-Pasta-Ulam recurrence. I n  order to clarify the quantitative behaviour of wave- 
trains, the corresponding periodograms are shown in figure 9. Figure 9(a) shows 
an instability behaviour similar to that observed in figure 6 but with more enhanced 
sideband amplitudes. Again, growth is limited to the lower-sideband component. 
Figure 9 (b) shows growth of the lower-sideband component which eventually 
outgrows the amplitude of the carrier wave at kx = 91. In  figure 9 (c), the amplitude 

* of the lower-sideband component exceeds that of the carrier wave initially at kx = 32. 
Nevertheless, the lower sideband continues to grow and the amplitude becomes 
approximately 100 times that of the original carrier wave at kx = 91. Apparently, 
the lower sideband assumes the role of the carrier wave as a shift of energy to lower 
frequency occurs. Figure 9(c) also shows the emergence of a new lower-sideband 
component at a frequency with the same separation Au. According to  the sequence 
of periodograms in figure 9 (c), the demodulation process observed in the time domain 
of figure 8 (c )  is a consequence of continuous growth of the lower-sideband component 
and is not genuine Fermi-Pasta-Ulam recurrence as predicted by the inviscid theory. 
The observed demodulation process involves a frequency shift to the lower value. A 
similar frequency shift of a carrier wave was also observed by Melville (1982) in his 
experiments for deep-water waves which involved much smaller viscous dissipation 
than that for edge waves. He attributed the frequency shift to wave breaking. Again, 
the breaking mechanism cannot be an explanation here since no breaking occurred 
in the present experiments ; however, substantial energy dissipation is caused by 
direct viscous effects. Although direct viscous dissipation is small for deep-water 
waves, turbulence induced by wave breaking must cause a large energy dissipation. 
Thus, a common factor of edge-wave and deep-water-wave evolutions is the 
involvement of substantial energy dissipation even though the dissipation mechan- 
isms are different. Therefore, we conjecture that the frequency down-shift pheno- 
menon for edge waves is a consequence of nonlinear viscous dissipation effects 
although the nature of the dissipation process is still unclear. (The evolution equation 
including the strong viscous effects is not known.) 

It is noted also that the results of the three separate experiments shown in figures 
8 and 9 seem to be those taken from a single experiment over a long propagation 
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FIGURE 9. Periodograms of wave records shown in figure 8. 

distance when viewed from one perspective. For example, the periodogram at kz = 32 
in figure 9 (b) resembles that at kz = 71 in figure 9 (a), and the periodograms at kz = 91 
in figure 9 (b) and at kx = 32 in figure 9 (c) are similar (although corresponding values 
of Zk are substantially different). Variations of the normalized magnitudes S2 of the 
lower-sideband component for these three experiments are presented in figure 10 (a). 
Included here also are the results presented in figure 7. The growth pattern of each 
experiment shown is smooth and qualitatively consistent with each other. Thus, we 
attempted to patch the results together to produce a composite evolution process for 
the lower-sideband component. Such an attempt is made by shifting the results until 
a single smooth pattern appears. The results are presented in figure l O ( b ) .  The solid 
line in this figure is the measured exponential growth rate of the lower sideband with 
the e folding distance 6, = 7.3 m. The consequence of this shifting is surprising. The 
lower-sideband component grows exponentially with a constant rate regardless of 
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initial modulation. This is true even after the lower sideband outgrows the carrier-wave 
component. For S2 > 1 .O, the original lower-sideband component becomes effectively 
a carrier-wave component and as a result a frequency shift occurs. Then the results 
for S2 > 1.0 are viewed as showing that the original carrier-wave component (or 
shifted upper-sideband component) decays exponentially with the same rate from the 
fully modulated state. Values of S2 for the newly born lower-sideband component 
shown in figure 9 ( c )  are also presented in figure 10 (b). Again, the growth pattern Seems 
to follow that of its predecessor. It should be re-emphasized here that the wave 
nonlinearity is not continuous between the patched experimental results presented. 

Unlike the behaviour of the lower sideband, no exponential growth is observed for 
the upper-sideband component. Shifting the data spatially to produce a composite 
evolution pattern is not possible for the upper-sideband behaviour. 

3.4. Edge-wave envelope solitons 

The NLS equation of (1.7) predicts the existence of edge-wave envelope solitons. 
Soliton phenomena in the context of water waves have been studied experimentally 
by Hammack & Segur (1974) and Weidman & Maxworthy (1978) for long waves, 
Koop & Butler (1981) and Segur & Hammack (1982) for long internal waves, as well 
as Yuen & Lake (1975) and Ablowitz & Segur (1979) for deep-water waves. In all 
of these experiments the effects of viscosity were weak relative to the inviscid 
dynamics of wave dispersion and nonlinearity. Consequently, the solitons evolved in 
the viscous environments and then slowly decayed in amplitude. During decay the 
soliton continually adjusted its shape to retain the proper amplitude-length 
relationship to remain 'locally ' a soliton. It is noted that the timescale for long-wave 

FIQURE 10. Variation of normalized lower-sideband amplitudes, (a) with propagation distance and 
( b )  in a patched form found by shifting data in space, w, = 4.05 rad/s, 6 = 0.167; 0, 8, = 0.025; 
A, 8, = 0.10; 0, 8, = 0.29; V, AS, = 1.0; v, 8, = 1.0 for newly emerged lower sideband; -, 
measured growth with u, = 7.1 m. 
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FIGURE 11. Temporal wave profiles at y = 10 cm (ky = 0.65) for four longshore locations with an 
initial soliton-shaped packet, o, = 4.05 rad/s; (a) z = 5 m (kz = 32); ( b )  z = 8 m (kz = 52); 
(c) z = 11 m (kz = 71); ( d )  z = 14m (kz = 91); ------,  theoretical envelope profile (Eq. (1.12)). 
(Amplitudes shown are not scaled.) 

solitons to occur, O(ak), is muchshorter than that, O(a2k2), for deep-water or edge-wave 
solitons governed by the nonlinear Schrodinger (NLS) equation. Thus, the timescale 
of viscous attenuation for long-wave solitons can be much shorter than that for the 
envelope solitons of the NLS equation without significantly affecting the inviscid 
dynamics. Segur (1981) also showed that envelope solitons of deep-water waves decay 
twice as fast by viscous effects as the corresponding uniform train of infinitesimal 
waves. This causes additional difficulty in achieving a timescale separation between 
viscous and inviscid dynamics for solutions governed by the NLS equation. 

As noted in $3.2, viscous effects on uniform trains of edge-waves are not weak 
relative to the inviscid effects modelled by the NLS equation. Since viscous effects 
are expected to be even greater for envelope solitons, it  is legitimate to question the 
existence of even ‘locally’ edge-wave envelope solitons. Using the carrier wave 
frequency o = 4.05 rad/s edge-waves with an envelope given by (1.12) are generated. 
Because of the wave attenuation involved and the lack of a solution to the wavemaker 
problem, the effective magnitude of the wave nonlinearity parameter ak and the 
corresponding lengthscale of the envelope soliton must be determined by trial and 
error. The wavemaker stroke and envelope length- (time-) scale are varied until the 
envelope profile at the first measurement station at x = 5 m (kx = 32) conforms to 
(1.12), i.e. a local soliton structure is achieved, as seen in figure 11. During the 
subsequent propagation the initially soliton-shaped envelope distorts and appears as 
a wave packet(s) of aaymmetric shape. These results are typical of all efforts to 
generate a ‘locally’ envelope soliton. Thus, it does not appear that a locally-soliton 
wave packet is stable in the laboratory environment used here. Viscous attenuation 
apparently influences the inviscid dynamics to prevent wave nonlinearity from 
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FIQIJRE 12. Temporal wave profiles at x = 1 1  m (kr = 71) at various offshore locations for a 
Symmetrical wave packet with wc = 4.05 rad/s. (Amplitudes shown are not scaled.) 

balancing with linear effects of frequency dispersion. The measured exponential 
attenuation rate for the envelope shown in figure 11 is yrn = 0.059 s-l which exceeds 
the measured attenuation rate for the corresponding uniform train presented in 
figure 3 by approximately 30 yo. 

It should be noted that Akylas (1983) showed that an envelope soliton for edge 
waves has a three-dimensional structure and is dependent of the vertical and offshore 
coordinates; the decay rate in the offshore direction is diminished due to the nonlinear 
effects and the phase of an envelope soliton depends on the offshore and vertical 
coordinates. However, his solution (equation (54) in Akylas 1983) contains a 
singularity as ak2(y cosp-z sinp) +in so that i t  is not clear that his solution is 
correct. Although Akylas’ theoretical prediction cannot be compared with the present 
experimental results (since no envelope soliton could be generated), it is interesting 
to examine the offshore behaviour of a single symmetrical wave packet at  a 
downstream beach location. The profiles at  9 offshore locations of this symmetrical 
wave packet at II: = 11 m ( ~ I I :  = 71) are shown in figure 12. The results indicate that 
the symmetrical envelope shape is consistent at the offshore locations. The amplitude 
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FIGURE 13. Offshore amplitude profile of the symmetric wave packet 
shown in figure 12. 0,  measured data; -, theoretical profile. 

of the envelope decays exponentially offshore with the theoretical e folding distance, 
ye = (k cos/3)-’, as shown in figure 13. Based on these data, there appears to be no 
three-dimensional structure for the envelope and no unstable behaviour iil the 
offshore (transverse) direction. 

Careful observation of the results in figures 11 and 12 reveals that there exists a 
small wave packet leading the main wave group. Unfortunately, the offshore profile 
of this wave packet cannot be measured due to its small amplitude, although 
inspection of figure 12 indicates the appearance of a node. The phase velocity C,  for 
this packet was measured by aligning the two wave gauges parallel to the shoreline 
with a spacing of 50 cm apart; the result was found to be C, = 1.8 m/s. This 
measured phase speed closely agrees with the theoretical value C,  = 1.7 m/s for the 
higher-mode (n = 1) edge waves. The appearance of a node in the offshore profile and 
the phase speed suggest that the small wave packet consists of edge waves of the 
higher mode. The higher-mode edge waves must be generated by the wavemaker 
motion, and the faster propagation and less wave attenuation associated with the 
higher mode enhance its appearance at the downstream location. 

4. Conclusion 
We first showed that progressive edge waves can in fact be generated directly in 

a laboratory wave tank. The amplitude of progressive edge waves attenuates 
exponentially as they propagate. The actual attenuation rate is greater than the 
theoretical prediction based on the lowest-order dissipation mechanism of laminar 
boundary layers at the beach surface and the free water surface (fully contaminated). 
The timescale of the wave attenuation in the experiments is comparable with the 
timescale of the evolution process for weakly nonlinear and inviscid progressive edge 
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waves modelled by the NLS equation. This fact emphasizes the shortcomings of the 
derived evolution equation as an appropriate model of the experiments (or vice versa). 
Although the NLS equation indicates the occurrence of instability for a uniform train 
of edge waves, the actual behaviour of the unstable wavetrain is qualitatively and 
quantitatively different from the theoretical predictions. For the unstable wavetrain, 
the theory predicts that a pair of sideband components around the carrier-wave 
frequency should grow exponentially at  an equal rate. The actual behaviour of the 
sideband components is as follows. The lower-sideband component grows exponen- 
tially at a constant rate. The upper-sideband component experiences no growth. This 
behaviour of each sideband is not limited to the initial instability of a uniform 
wavetrain, but is also the same for an initially modulated wavetrain. Furthermore, 
the exponential growth rate of the lower sideband appears to be independent of the 
strength of the initial modulation. Depending on the initial modulation, the 
lower-sideband component can even outgrow the carrier-wave component and, as a 
result, the initially modulated wavetrain demodulates with shifting of the frequency 
of the dominant wave to a lower value. Similar behaviour of the frequency downshift 
has also been observed for deep-water waves with weak viscous effects but involving 
wave breaking. No wave breaking occurred in the edge-wave experiments but viscous 
effects are substantial for edge waves. Since both wave breaking for deep-water waves 
and direct viscous effects for edge waves cause significant energy dissipation, we 
conjecture that this frequency down-shift phenomenon is a consequence of nonlinear 
dissipation effects which are not modelled by the inviscid theory (the NLS equation). 

The NLS equation also indicates the existence of edge-wave envelope solitons. 
However, a generated soliton-shaped wave packet distorts and becomes asymmetric 
during propagation. In  other words, locally soliton-shaped packets of edge waves are 
unstable in the laboratory environment. Viscous attenuation appears to decrease 
wave nonlinearity too rapidly for it to remain balanced locally with the linear effect 
of frequency dispersion. On the other hand, a symmetrical wave packet observed near 
the shore is consistent at  the offshore locations. The amplitude of the envelope decays 
exponentially offshore in accordance with the linear theory. 

In  order to achieve inviscid experiments for the NLS equation, the timescale of 
the viscous effects must be much smaller than the timescale of the evolution process, 
i.e. 

yt -4 @a2k2. (4.1) 

Taking the smallness to be O(ak) -4 1, (4.1) can be expressed by 

as a criterion for the inviscid experiments with small /3. The wave frequency should 
be less than 1.5 rad/s for the viscous effects to be unimportant under the conditions 
of /3 = 15O and ak = 0.2. The corresponding e folding distance for the maximum 
instability growth rate of a uniform edge-wavetrain is 56 m. This would require an 
extremely large wave tank, say 150 m long; the propagation distance should be at 
least several times the e folding distance in order to observe the evolution process. 
Such experiments are not possible in the laboratory facility used in this study. On 
the other hand, edge-wave frequencies are relatively small for field conditions (e.g. 
w x 0.05 rad/s observed by Huntley, Guza & Thornton 1981). Hence the viscous 
distortion on the evolution process should not be a problem unless the beach slope 
is extremely small, and the present experimental results cannot disprove the 
application of the inviscid theory to the field conditions. As demonstrated by these 
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estimates, the scale effects are important in laboratory experiments for this boundary- 
dominated flow. It is interesting to note that significant scale effects were also pointed 
out by Sprinks t Smith (1983) who analysed the experimental results for wave 
amplification at a conical island, which is another type of boundary-dominated flows. 

The author is indebted to Professor J. L. Hammack for suggesting this topic and 
for helpful discussions. The work for this paper was supported in part by the 
University of California, Berkeley, and by National Science Foundation Grant no. 
ENG-781/697. 
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